COURSE OBJECTIVE:
• Explore Azure Databricks
• Perform data analysis with Azure Databricks
• Use Apache Spark in Azure Databricks
• Manage data with Delta Lake
• Build data pipelines with Delta Live Tables
• Deploy workloads with Azure Databricks Workflows
• Use SQL Warehouses in Azure Databricks
• Run Azure Databricks Notebooks with Azure Data Factory
TARGET AUDIENCE:
Not available. Please contact.
COURSE PREREQUISITES:
None
COURSE CONTENT:
Module 1 : Explore Azure Databricks
• Provision an Azure Databricks workspace
• Identify core workloads for Azure Databricks
• Use Data Governance tools Unity Catalog and Microsoft Purview
• Describe key concepts of an Azure Databricks solution
Module 2 : Perform data analysis with Azure Databricks
• Ingest data using Azure Databricks.
• Using the different data exploration tools in Azure Databricks.
• Analyze data with DataFrame APIs.
Module 3 : Use Apache Spark in Azure Databricks
• Describe key elements of the Apache Spark architecture.
• Create and configure a Spark cluster.
• Describe use cases for Spark.
• Use Spark to process and analyze data stored in files.
• Use Spark to visualize data.
Module 4 : Manage data with Delta Lake
• What Delta Lake is
• How to manage ACID transactions using Delta Lake
• How to use schema versioning and time travel in Delta Lake
• How to maintain data integrity with Delta Lake
Module 5 : Build data pipelines with Delta Live Tables
• Describe Delta Live Tables
• Ingest data into Delta Live Tables
• Use Data Pipelines for real time data processing
Module 6 : Deploy workloads with Azure Databricks Workflows
• What Azure Databricks Workflows are
• The key components and benefits of Azure Databricks Workflows
• How to deploy workloads using Azure Databricks Workflows
Module 7 : Use SQL Warehouses in Azure Databricks
• Create and configure SQL Warehouses in Azure Databricks.
• Create databases and tables.
• Create queries and dashboards.
Module 8 : Run Azure Databricks Notebooks with Azure Data Factory
• Describe how Azure Databricks notebooks can be run in a pipeline.
• Create an Azure Data Factory linked service for Azure Databricks.
• Use a Notebook activity in a pipeline.
• Pass parameters to a notebook.
FOLLOW ON COURSES:
Not available. Please contact.