COURSE OBJECTIVE:
After completing this course, you should be able to:
• Design EIGRP internal routing for the enterprise network
• Design OSPF internal routing for the enterprise network
• Design IS-IS internal routing for the enterprise network
• Design a network based on customer requirements
• Design BGP routing for the enterprise network
• Describe the different types and uses of MP-BGP address families
• Describe BGP load sharing
• Design a BGP network based on customer requirements
• Decide where L2/L3 boundary will be in your Campus network and make design decisions
• Describe layer 2 design considerations for Enterprise Campus networks
• Design a LAN network based on customer requirements
• Describe layer 3 design considerations in an Enterprise Campus network
• Examine Cisco SD-Access fundamental concepts
• Describe Cisco SD-Access Fabric Design
• Design an SD-Access Campus Fabric based on customer requirements
• Design service provider-managed VPNs
• Design enterprise-managed VPNs
• Design a resilient WAN
• Design a resilient WAN network based on customer requirements
• Examine the Cisco SD-WAN architecture
• Describe Cisco SD-WAN deployment options
• Examine Cisco SD-WAN—NAT and hybrid design considerations
• Design Cisco SD-WAN redundancy
• Explain the basic principles of QoS
• Design QoS for the WAN
• Design QoS for enterprise network based on customer requirements
• Explain the basic principles of multicast
• Exploring Multicast with PIM-SM
• Designing rendezvous point distribution solutions
• Describe high-level considerations when doing IP addressing design
• Create an IPv6 addressing plan
• Plan an IPv6 deployment in an existing enterprise IPv4 network
• Describe the challenges that you might encounter when transitioning to IPv6
• Design an IPv6 addressing plan based on customer requirements
• Describe Network APIs and protocols
• Describe YANG, NETCONF and RESTCONF
TARGET AUDIENCE:
Presales and postsales network engineers that are involved in network design, planning, and implementation, Network administrators and designers that are responsible for designing and implementing the enterprise network.
COURSE PREREQUISITES:
Attendees should meet the following prerequisites:
• Understand network fundamentals
• Implement LANs
• Implement Internet connectivity
COURSE CONTENT:
Designing EIGRP Routing
• Describe Scalabale EIGRP Designs and Fast Convergence
• Examine EIGRP Autonomous Systems and Layered Designs
• Describe Scalable EIGRP Hub-and-Spoke and Stub Designs
• Describe EIGRP Convergence Features
Designing OSPF Routing
• OSPF Neigbour Adjacencies and LSAs
• OSPF Scalability Issues
• Define Area and Domain Summarization
• OSPF Full and Partial Mesh
• OSPF Convergence
• Design Case Study Activity: Designing an Enterprise Connectivity
Designing IS-IS Routing
• Describe IS-IS Routing Protocol
• Examine IS-IS Adjacencies and Authentication
• Describe IS-IS and OSPF Similarities
• Explore IS-IS Routing Logic
• Describe IS-IS Operations
• Examine Integrated IS-IS for IPv6
Designing BGP Routing and Redundancy
• Identify IBGP Scalability Issues
• BGP Route Reflector Terminology
• Describe BGP-Split-Horizon
• Route Reflector Loop Prevention Mechanisms
• BGP Confederation Loop Prevention Mechanisms
• Compare BGP Load Sharing Designs
• Examine Dual and Mulithomed BGP Designs
Explorig BGP Address Families and Attributes
• BGP Address Families and Attributes
• BGP Route Selection Preferences
• Describe BGP Communities
• Examine a Case Study – Designing a Dual-Stack MP-BGP Environment
• Design Case Study Activity: Designing an Enterprise Network with BGP Internet Connectivity
Designing an Enterprise Campus LAN
• Compare End-to-End and Local VLANs
• Describe the Layer 3 Access Layer
• Examine a Case Study
• Describe Cloud Deployment Models
Designing Layer 2 Campus
• Describe VLANs, Trunks and VTP
• Understanding the Spanning Tree Protocol
• Understanding Layer 2 Security Techniques
• Understand MST, POE, and EnergyWise
• Describe Port Aggregation Considerations
• First-Hop Redundancy
• Describe Network Requirements of Applications
• Design Case Study Activity: Designing an Enterprise Campus LAN
Designing a Layer 3 Campus
• The Benefits of Building Triangles
• Routing Convergence
• Describe Routing Protocols and Summarization
• Describe Default Routes, Redistribution and Filtering
• Examine Passive Interface, Routing Convergence and Routing IPv4 and IPv6
• Describe Network Management Best Practices
Discovering the Cisco SD-Access Architecture
• Cisco Software Defined Access Overview
• Cisco Software-Defined Access Architecture
• Cisco SD-Access Node Roles
• Cisco Software-Defined Access Definition and Benefits
• Examine the Fabric Enabled Wireless LAN
• Role of Cisco SD-Access in Cisco DNA
Exploring Cisco SD-Access Fabric Design
• Describe SD-Access Fabric Constructs
• Describe Design Requirements of Underlay Network
• Describe DHCP and Security Solutions for the Fabric Domain
• Describe Cisco SD-Access Wireless Fabric Constructs
Exploring Cisco SD-Access Site Design Strategy and Considerations
• Cisco SD-Access Site Reference Models
• Cisco SD-Access Distributed Campus Considerations
• Migration to Cisco SD-Access
• Design Case Study Activity: Designing Cisco SD-Access in the Enterprise
Discovering Service Provider-Managed VPNs
• WAN Connection Decision Points
• Describe Layer 3 MPLS VPN
• Use Routing Protocols at the PE-CE
Designing Enterprise-Managed VPNs
• Enterprise-Managed VPNs Overview
• Describe GRE, mGRE and IPsec
• Describe Dynamic VTI, GET VPN, SSL VPN and Flex VPN
• Describe DMVPN
• Describe EIGRP DMVPN and DMVPN Scaling
Designing WAN Resiliency
• WAN Design Overview
• Describe Common MPLS WNA Design Models
• Describe Common Layer 2 WNA Design Models
• Describe Cmmon VPN WAN Design Models
• Describe Cellular VPN Design Models
• Remote Site Local Internet Connectivity
• Remote-Site LAN Design
• WAN Connectivity Case Study
• Describe Basic Traffic Engineering Techniques
• Describe Cloud Connectivity Options
• Design Case Study Activity: Designing Resilient Enterprise WAN
Examining Cisco SD-WAN Architectures
• Describe SDN for the WAN
• Describe Cisco SD-WAN Components and Functions
• Describe the Orchestration Plane
• Describe the Management Plane
• Describe the Control Plane
• Describe the Data Plane
• Describe SD-WAN Analytics
• Describe the Overlay Management Protocol
• Define OMP Network Terminology
• Describe Transport Locators
• Describe Fabric Operation
Examining Cisco SD-WAN Deployment Design Considerations
• Describe Controller Deployment Options
• Describe Controller Deployment Models
• Describe Cisco SD-WAN Cloud Deployment
• Describe Cisco SD-WAN Managed Service Provider Deployment
• Describe Cisco SD-WAN On-Premises Deployment
• Use Enterprise CA
• Describe Controller Placement and Challenges
• Describe Cloud Controller Connections
• Describe On-Premise Controller Connections
• Describe MPLS and Internet Interconnection
• Describe Deployment Considerations
• Describe On-Premises Deployment Considerations
• Describe vBond On-Premises Deployment
Examining Cisco SD-WAN-NAT and Hybrid Design Considerations
• Describe Working with NAT
• Describe NAT Traversal Combinations
• Describe Zero-Touch Provisioning
• Describe Considerations for Hybrid Scenarios
• Describe Deployment Options: Pure Vs Hybrid
Designing Cisco SD-WAN Routing and High Availability
• Describe Horizontal Solution Scale
• Describe SD-WAN Redundancy
• Describe Site Design
• Describe Path Redundancy
• Compare an Underlay Vs Overlay Network
• Describe SD-WAN Branch Connectivity
• Describe SD-WAN Privacy and Integrity
• Describe SD-WAN Secure Segmentation
• Describe SD-WNA Security Features
• Cisco SD-WAN Security Use Cases
• Design Case Study Activity: Designing Resilient Enterprise Cisco SD-WAN
Exploring QoS
• IntServ vs DiffServ
• Explain Classification and Marking Tools
• Policers and Shapers
• Describe Queuing Tools
• Explain RFC 4594 QoS Recommendations
Designing LAN and WAN QoS
• Need for Campus QoS
• Describe the Classification, Marking and Policing QoS Model
• Need for QoS in WAN and Branch
• Need for QoS in IPsec VPN
• Describe DMVPN QoS Considerations
• Describe SD-WAN Forwarding
• Describe SD-WAN QoS Operation
• Descrive vEdge Queuing
• Design Case Study Activity: Designing QoS in an Enterprise Network
Introducing Multicast
• Explain How IP Multicast Works
• Explain Multicast Groups
• Describe SD-WNA Multicast Application Support
• Describe the Functions of a Multicast Network
• Describe Multicast Protocols
• Describe Multicast Forwarding and RPF Check
• Explain Multicast Protocol Basics
Exploring Multicast with PIM-SM
• Describe Multicast Distribution Trees Identification
• Describe Reciver Joins and Registering the Source
• Describe PIM-SM SPT Switchover
• Describe Multicast Routing Table
• Describe Basic SSM Concepts
• Describe Bidirectional PIM
• Describe DF Election and Messages
• Case Study: DF Election
Designing Rendezvous Point Distribution Solutions
• Rendezvous Point Discovery
• Case Study: Auto-RP Operation
• Auto-RP and BSR Flooding
• MSDP Protocol Overview
Designing an IPv4 Address Plan
• IPv4 Adress Planning Considerations
• Plan the IP Addressing Hierarchy
• Create an Addressing Plan
• Case Study: Design an IPv4 Address Space
• Case Study: Resolve Overlapping Address Ranges
• Allocating More IP Addresses
Exploring IPv6 (Self-Study)
• IPv6 Address Planning Considerations
• IPv6 for an Enterprise
• Describe IPv6 Address Allocation: Linked IPv4 Into IPv6
• Describe IPv6 Address Allocation: Per Location/Type
• Describe IPv6 Address Allocation: Per VLAN
Deploying IPv6 (Self-Study)
• Describe the IPv6 Phased Approach
• Identify IPv6 Services to Deploy
• IPv4 and IPv6 Coexistence
• Transition Mechanisms
• Describe NAT64 and DNS64
• Describe Manual Tunnels
• Describe Tunnel Brokers
• Describe 6rd
• Describe DS-Lite
• Describe LISP
• IPv6 Application Support
• IPv6 Related Security
• Design Case Study Activity: Designing an Enterprise IPv6 Network
Introducing Network APIs and Protocols (Self-Study)
• Describing Network APIs and Protocols
• Describing the Evolution of Device Management and Programmability
• Describing Data Encoding Formats
• Describing JSON
• Decrisbing XML
• Describing Data Models
• Describing the Model-Driven Programmability Stack
• Describing REST
• Describing NETCONF
• Describing RESTCONF
• Describing gRPC
Exploring YANG, NETCONF, RESTCONF, and Model-Driven Telemetry (Self-Study)
• Define YANG, NETCONF and RESTCONF
• Describe YANG Concepts
• Describe NETCONF Concepts
• Describe RESTCONF Concepts
• Compare NETCONF and RESTCONF
• Describe gRPC and gNMi
• Define Model-Driven Telemetry
• Describe Stream Telemetry Data
• Explain Subscription
• Describe Dial-In and Dial-Out Model-Driven Telemetry
FOLLOW ON COURSES:
Not available. Please contact.